2024 Idaho State Energy Security Plan "Risk Assessment" and "Energy Resiliency & Hazard Mitigation" sections For use in Applications for Round 2 of the Energy Resiliency Grant Program

RISK ASSESSMENT

The risk assessment leverages industry subject matter expertise and recommendations from a stakeholder group to inform Idaho's energy security planning efforts. This section supports the State's emergency planning and response and provides information to energy system asset owners.

Methodology

OEMR facilitated a stakeholder advisory group comprised of energy, agency, Tribal, and community stakeholders who advised, supported, and recommended updates to OEMR for the Plan. OEMR hosted three advisory group meetings. At these meetings, the advisory group selected high priority risks, responded to a risk assessment survey, reviewed the scored risks, and provided feedback on the draft Plan.

Advisory group members:

- Avista (electricity division and natural gas division)
- Idaho Consumer Owned Utility Association
- Idaho Power
- Idaho National Lab (INL)
- Intermountain Gas Company (IGC)
- Idaho Public Utilities Commission
- Marathon
- Nez Perce Tribe
- PacifiCorp
- Williams Companies
- Yellowstone Pipeline Company (Phillips 66)
- TransCanada Energy (TC Energy)

Risk Selection

In the first advisory group meeting, OEMR introduced the Plan and a preliminary plan for completing the risk assessment. Members were asked to nominate threats to their communities or organizations along with threats they perceived to be of greatest concern.

In the second advisory group meeting, the advisory group voted to analyze nine of the threats it deemed most pervasive to Idaho's energy security: cyberattack, physical attack, extreme heat, damaging wind, flooding, earthquake/liquefaction, lightning, winter storm, and wildfire.

Assessment of Vulnerability and Consequence

A survey (attached below as Appendix M) was distributed to energy asset owners to collect information regarding asset vulnerabilities, historical consequences, and future consequences. The survey was developed by OEMR and reviewed by the PUC, DOE CESER, and NASEO before distribution. Annualized frequency maps for natural disaster threats were developed using data from FEMA's National Risk Index (NRI). Survey respondents were asked to distribute the survey to subject matter experts in their organizations and were given a period of one week to respond. Responses were aggregated and integrated into risk assessment matrices.

Scoring

Scores were based on the results of the survey. Only publicly available data and self-reported data was used for scoring. The survey was designed to allow respondents to provide non-sensitive information that can be publicly presented. Using data from the PUC, scores were weighted to reflect the number of customers

served by utilities. For example, Idaho Power serves 48.56% of customers in Idaho. A vulnerability score of 1 for Idaho Power translates to a weighted score of 0.49. By asset type, the scores of each energy provider were combined to create a statewide score. Once scores were developed by asset type, the average vulnerability scores and consequence scores were multiplied by the threat score to calculate overall risk.

Threat Score × Avg. Vulnerability Score × Avg. Consequence Score = Risk Score

The calculations were plotted on a heat map to display the likelihood of threats across the state. Threat score was plotted on the Y axis and the Avg. Vulnerability Score \times the Avg. Consequence Score was plotted on the X axis.

In the third advisory group meeting, members were asked to review and comment on the draft risk assessment.

Other Multiple Sector Threats and Additional Conversation

Energy system asset owners were asked to describe historical impacts of cyber and physical attacks on infrastructure. The approach was intended to use responses to project future frequency of threat occurrence and possible consequences. Responses to the survey did not produce data usable for assessing risk as each data point is not correlated and do not produce observable trends. Statistically, the collected data is random.

In the past five years, the State of Idaho has had cases of vandalism and theft from infrastructure sites. One event was an intentional effort to damage the facility with ballistics. A citizen from Meridian, Idaho, drove to the Hells Canyon Complex and shot at substation infrastructure resulting in damages totaling \$546,982.46 and a short disruption of production capability from the Hells Canyon and Brownlee Dams.⁶³

Regarding cyberattacks, responses varied in historical exposure to cyberattacks. Of the eight organizations surveyed, three indicated there have been attempts to infiltrate their systems in the past five years. One of the responding organizations indicated that they were aware of daily attempts to breach their systems. Of those three, only one indicated there was a successful attack. In December 2023, Lower Valley Energy, based in Wyoming and serving a small portion of Idaho customers, fell victim to a ransomware attack. The investigation into the incident did not find evidence that personal information of customers was impacted.

These cyber and physical attacks are becoming more prevalent in the threat landscape. Understanding the potential impact to infrastructure, OT, and IT systems is imperative for utilities' preparedness and planning efforts.

Recommendations for Future Risk Assessments

OEMR has identified areas to build upon in future versions of the Plan:

- Refine survey used to assess vulnerability and consequence
- Continue to obtain useful threat data
- Assess threats by region to account for regional differences, such as climate
- Fine-tune natural gas and petroleum methodology

⁶³ Meridian man sentenced for shooting multiple power stations at Idaho dams in 2022," KTVB 7, June 2024, https://www.ktvb.com/article/news/crime/meridian-man-sentenced-shooting-power-stations-hells-canyon-brownlee-dams/277-2a3a0451-aab2-4f86-9c63-42cf30b50028

⁶⁴ "Cybersecurity Incident Update," Lower Valley Energy, December 2023, https://www.lvenergy.com/2023/12/28/cybersecurity-incident-update/

Risk Data

Survey respondents identified the portion of their energy system and the number of customers located in the identified risk regions.

Threats were scored based solely on FEMA's NRI annual frequency data. 65 This data is available by county and was translated into a county level heat map displaying the most at-risk counties in the state. These heatmaps are available in Appendix M.

For exposure to the threat, or vulnerability, respondents could select tiered options of 50% or more, 20% - 49%, 1% - 19%, and 0% of their system. A score of 1 was allocated to the 1% - 19% option, a score of 2 was given to the 20% - 49% option, and a score of 3 was given to the 50% or more option.

Similarly, respondents had the option to select 20% or more, 5% - 19%, less than 5%, or 0% of customers would lose service should their system be impacted by a threat. A score of 1 was allocated to the less than 5% option, a score of 2 was given to the 5% - 19% option, and a score of 3 was given to the 20% or more option.

Electricity

Using data from the PUC, OEMR calculated the total percentage of utility service to Idaho. There is a base number of 1,216,667 electricity customers in the State of Idaho. Idaho Power serves 48.56%, Avista serves 33.48%, Rocky Mountain Power serves 7.27%, and other electricity providers serve 10.69%.66 The scores from the survey responses were weighted by multiplying the score by the percentage of customers served. To generate a statewide score, the weighted scores were added together. The scores are shown below.

Annual Frequency	Ranking	Threat Score
0.00 - 0.200	Very Low	1
0.200 - 0.400	Low	1.5
0.400 - 0.600	Moderate	2.0
0.600 - 0.800	High	2.5
0.800 - 1.000	Very High	3.0

	State Average Annual		
Threat	Frequency	Overall Rating	Threat Score
Damaging Wind	.2081	Low	1.5
Earthquakes/Liquefaction	.6207	High	2.5
Extreme Heat	.3872	Low	1.5
Flooding	.2966	Low	1.5
Lightning	.2672	Low	1.5
Wildfire	.8310	Very High	3.0
Winter Storm	.4561	Moderate	2.0

Statewide Vulnerability and Consequence Score	Ranking
0 - 0.60	Very Low

^{65 &}quot;Data Resources," FEMA, 2024, https://hazards.fema.gov/nri/data-resources

https://puc.idaho.gov/Fileroom/PublicFiles/annualreports/ar2023/ar2023.html

^{66 &}quot;Idaho Public Utilities Commission Annual Report 2023," IPUC, 2023,

0.61 - 1.20	Low
1.21 - 1.80	Moderate
1.81 - 2.40	High
2.41 - 3.0	Very High

				Distribution	
Vulnerability Scores	Production	Transmission	Storage	Network	Overall Rating
Damaging Wind	1.1893	1.4030	1.1893	1.4030	1.30
Earthquakes/Liquefaction	1.1893	1.1893	1.1893	1.1893	1.19
Extreme Heat	0.9713	1.3061	0.9713	1.3061	1.14
Flooding	1.6023	1.6023	1.6023	1.6023	1.60
Lightning	1.1893	1.8447	1.1893	1.8447	1.52
Wildfire	0.7281	2.1850	0.0727	2.1850	1.29
Winter Storm	0.5529	1.3591	0.2180	1.3591	0.87

Consequence Scores	Production	Transmission	Storage	Distribution Network	Overall Rating
Consequence Scores	1 10ddction	1141151111551011	Storage	INCLWOIK	Overall Rattlig
Damaging Wind	1.6750	2.5583	1.6750	2.5583	2.12
Earthquakes/Liquefaction	1.6750	1.6750	1.6750	1.6750	1.67
Extreme Heat	1.6750	2.0098	1.6750	2.0098	1.84
Flooding	1.6023	1.6023	1.6023	1.6023	1.60
Lightning	1.6023	2.1508	1.6023	2.1508	1.88
Wildfire	0.6939	2.1508	0.1454	2.1508	1.29
Winter Storm	0.8150	2.0000	0.1454	2.0000	1.24

Damaging Wind:

To calculate Statewide Risk, the Threat Score is multiplied by the average Vulnerability Score across asset types and the average Consequence Score across asset types. To this end, to calculate the Risk Score of damaging wind to the State of Idaho's electricity infrastructure, the formula would be 1.5 (Threat Score) * 1.30 (Vulnerability Score) * 2.12 (Consequence Score) = 4.12 points out of 9 possible (Risk Score).

Flooding:

To calculate Statewide Risk, the Threat Score is multiplied by the average Vulnerability Score across asset types and the average Consequence Score across asset types. To this end, to calculate the Risk Score of flooding to the State of Idaho's electricity infrastructure, the formula would be 1.5 (Threat Score) * 1.60 (Vulnerability Score) * 1.60 (Consequence Score) = 3.85 points out of 9 possible (Risk Score).

Earthquake and Liquefaction:

To calculate Statewide Risk, the Threat Score is multiplied by the average Vulnerability Score across asset types and the average Consequence Score across asset types. To this end, to calculate the Risk Score of earthquakes and liquefaction to the State of Idaho's electricity infrastructure, the formula would be 2.5

(Threat Score) * 1.19 (Vulnerability Score) * 1.67 (Consequence Score) = 4.98 points out of 9 possible (Risk Score).

Extreme Heat:

To calculate Statewide Risk, the Threat Score is multiplied by the average Vulnerability Score across asset types and the average Consequence Score across asset types. To this end, to calculate the Risk Score of extreme heat to the State of Idaho's electricity infrastructure, the formula would be 1.5 (Threat Score) * 1.14 (Vulnerability Score) * 1.84 (Consequence Score) = 3.15 points out of 9 possible (Risk Score).

Lightning:

To calculate Statewide Risk, the Threat Score is multiplied by the average Vulnerability Score across asset types and the average Consequence Score across asset types. To this end, to calculate the Risk Score of lightning to the State of Idaho's electricity infrastructure, the formula would be 1.5 (Threat Score) * 1.52 (Vulnerability Score) * 1.88 (Consequence Score) = 4.27 points out of 9 possible (Risk Score).

Wildfire:

To calculate Statewide Risk, the Threat Score is multiplied by the average Vulnerability Score across asset types and the average Consequence Score across asset types. To this end, to calculate the Risk Score of wildfire to the State of Idaho's electricity infrastructure, the formula would be 3.0 (Threat Score) * 1.29 (Vulnerability Score) * 1.29 (Consequence Score) = 4.98 points out of 9 possible (Risk Score).

Winter Storms:

To calculate Statewide Risk, the Threat Score is multiplied by the average Vulnerability Score across asset types and the average Consequence Score across asset types. To this end, to calculate the Risk Score of winter storms to the State of Idaho's electricity infrastructure, the formula would be 2.0 (Threat Score) * 0.87 (Vulnerability Score) * 1.24 (Consequence Score) = 2.16 points out of 9 possible (Risk Score).

Natural Gas

Data from both the PUC and self-reported data from natural gas service providers and product suppliers informed the weighting and development of statewide scores for asset types across threats. In contrast to the assessment conducted for electricity, the natural gas section analyzes threats by the total volume of natural gas serviced. PUC's 2023 Annual Report indicates the State of Idaho consumed about 1,020,000,000 therms of natural gas.⁶⁷ Of this number, Avista distributed 154,280,000 therms, or 15.12% of the market. Correspondingly, IGC distributed 862,600,000 therms, or 84.56% of the market.

Due to the sensitivity of some of the data used for score calculation, a detailed description is not shared.

Overall, scoring followed a procedure similar to the electricity scoring. Natural gas companies such as Avista, Dominion, and IGC are not responsible for the production, transmission, or storage of natural gas. Instead, they purchase the product from companies like Williams and TC Energy where natural gas is then pumped into distribution systems. To analyze the consequence of threats to assets, OEMR analyzed the total volume of natural gas TC Energy and Williams distributed to Avista and MDU. From this, OEMR calculated the number of customers that could be impacted. For example, if Avista received 40% of its natural gas for distribution from the Williams Pipeline, and IGC received 50% of its natural gas for distribution from the

^{67 &}quot;Idaho Public Utilities Commission Annual Report 2023," IPUC,

Williams Pipeline, the consequence of the Williams Pipeline being taken offline would be 40% of Avista's service in therms plus 50% of IGC's service.

Annual Frequency	Ranking	Threat Score
0.00 - 0.200	Very Low	1
0.200 - 0.400	Low	1.5
0.400 - 0.600	Moderate	2.0
0.600 - 0.800	High	2.5
0.800 - 1.000	Very High	3.0

	State Average Annual		
Threat	Frequency	Overall Rating	Threat Score
Damaging Wind	.2081	Low	1.5
Earthquakes/Liquefaction	.6207	High	2.5
Extreme Heat	.3872	Low	1.5
Flooding	.2966	Low	1.5
Lightning	.2672	Low	1.5
Wildfire	.8310	Very High	3.0
Winter Storm	.4561	Moderate	2.0

Statewide Vulnerability and Consequence Score	Ranking
0 - 0.60	Very Low
0.61 - 1.20	Low
1.21 - 1.80	Moderate
1.81 - 2.40	High
2.41 - 3.0	Very High

				Distribution	
Vulnerability Scores	Production	Transmission	Storage	Network	Overall Rating
Damaging Wind	0	0.0695	0	2.9904	0.76
Earthquakes/Liquefaction	0.9272	0	0.9272	1.6912	0.89
Extreme Heat	0.9272	0.9272	0.9272	0	0.70
Flooding	0.9272	0	0	2.6880	0.90
Lightning	0.9272	0.9272	0.9272	0	0.70
Wildfire	2.7817	2.8513	2.7817	2.5368	2.74
Winter Storm	0.9272	0.9272	0	1.2992	0.79

				Distribution	
Consequence Scores	Production	Transmission	Storage	Network	Overall Rating
Damaging Wind	0.0000	0.0000	0.0000	0.9968	0.25
Earthquakes/Liquefaction	0.927248	0	0.927248	0.8456	0.68
Extreme Heat	0.927248	0.927248	0.927248	0	0.70
Flooding	0.927248	0	0	0.8456	0.44
Lightning	0.927248	0.927248	0.927248	0.1512	0.73
Wildfire	0.927248	0.9968	0.927248	0.9968	0.96
Winter Storm	0.927248	0.927248	0.0000	0.9968	0.71

Damaging Wind:

To calculate Statewide Risk, the Threat Score is multiplied by the average Vulnerability Score across asset types and the average Consequence Score across asset types. To this end, to calculate the Risk Score of damaging wind to the State of Idaho's natural gas infrastructure, the formula would be 1.5 (Threat Score) * 0.76 (Vulnerability Score) * 0.25 (Consequence Score) = 0.29 points out of 9 possible (Risk Score).

Flooding:

To calculate Statewide Risk, the Threat Score is multiplied by the average Vulnerability Score across asset types and the average Consequence Score across asset types. To this end, to calculate the Risk Score of flooding to the State of Idaho's natural gas infrastructure, the formula would be 1.5 (Threat Score) * 0.90 (Vulnerability Score) * 0.44 (Consequence Score) = 0.60 points out of 9 possible (Risk Score).

Earthquake and Liquefaction:

To calculate Statewide Risk, the Threat Score is multiplied by the average Vulnerability Score across asset types and the average Consequence Score across asset types. To this end, to calculate the Risk Score of earthquakes and liquefaction to the State of Idaho's natural gas infrastructure, the formula would be 2.5 (Threat Score) * 0.89 (Vulnerability Score) * 0.68 (Consequence Score) = 1.50 points out of 9 possible (Risk Score).

Extreme Heat:

To calculate Statewide Risk, the Threat Score is multiplied by the average Vulnerability Score across asset types and the average Consequence Score across asset types. To this end, to calculate the Risk Score of extreme heat to the State of Idaho's natural gas infrastructure, the formula would be 1.5 (Threat Score) * 0.70 (Vulnerability Score) * 0.70 (Consequence Score) = 0.73 points out of 9 possible (Risk Score).

Lightning:

To calculate Statewide Risk, the Threat Score is multiplied by the average Vulnerability Score across asset types and the average Consequence Score across asset types. To this end, to calculate the Risk Score of lightning to the State of Idaho's natural gas infrastructure, the formula would be 1.5 (Threat Score) * 0.70 (Vulnerability Score) * 0.73 (Consequence Score) = 0.76 points out of 9 possible (Risk Score).

Wildfire:

To calculate Statewide Risk, the Threat Score is multiplied by the average Vulnerability Score across asset types and the average Consequence Score across asset types. To this end, to calculate the Risk Score of wildfire to the State of Idaho's natural gas infrastructure, the formula would be 3.0 (Threat Score) * 2.74 (Vulnerability Score) * 0.96 (Consequence Score) = 7.90 points out of 9 possible (Risk Score).

Winter Storms:

To calculate Statewide Risk, the Threat Score is multiplied by the average Vulnerability Score across asset types and the average Consequence Score across asset types. To this end, to calculate the Risk Score of winter storms to the State of Idaho's natural gas infrastructure, the formula would be 2.0 (Threat Score) * 0.79 (Vulnerability Score) * 0.71 (Consequence Score) = 1.12 points out of 9 possible (Risk Score).

Petroleum

Due to availability of data, vulnerability to the Southern part of Idaho's petroleum sector is based on natural gas transmission because of similarities such as geographic location and age of the assets. Risks to the distribution system were not analyzed.

The Idaho Fuels Regional Resilience Assessment Program (RRAP) Project from June, 2020 indicates that 70% of fuel coming into Idaho is delivered on the Marathon Pipeline or truck deliveries originating from the cluster of five refineries and pipeline inputs in Salt Lake City, UT. The balance of required fuels comes from terminals in Montana and eastern Washington served by the Yellowstone Pipeline (about 20%) and a small portion delivered by rail and barge from various sources (about 10%). 68

Annual Frequency	Ranking	Threat Score
0.00 - 0.200	Very Low	1
0.200 - 0.400	Low	1.5
0.400 - 0.600	Moderate	2.0
0.600 - 0.800	High	2.5
0.800 - 1.000	Very High	3.0

Threat	State Average Annual	Orranell Dating	Threat Score
	Frequency	Overall Rating	Threat Score
Damaging Wind	.2081	Low	1.5
Earthquakes/Liquefaction	.6207	High	2.5
Extreme Heat	.3872	Low	1.5
Flooding	.2966	Low	1.5
Lightning	.2672	Low	1.5
Wildfire	.8310	Very High	3.0
Winter Storm	.4561	Moderate	2.0

Statewide Vulnerability and Consequence Score	Ranking
0 - 0.60	Very Low
0.61 - 1.20	Low
1.21 - 1.80	Moderate
1.81 - 2.40	High
2.41 - 3.0	Very High

Vulnerability Scores	Production	Transmission	Storage	Overall Rating
Damaging Wind	0.2	0.2	0	0.13
Earthquakes/Liquefaction	0.7	0	0.7	0.47
Extreme Heat	0.7	0.7	0.7	0.70
Flooding	0.9	0.2	0	0.37
Lightning	0.7	0.9	0.9	0.83
Wildfire	2.1	2.3	2.1	2.17
Winter Storm	0.7	0.9	0	0.53

⁶⁸ "Resilience Assessment Idaho Fuels RRAP Project," CISA, June 2020, Pages 5-6.

_

Consequence Scores	Production	Transmission	Storage	Overall Rating
Damaging Wind	0.20	0.20	0.00	0.13
Earthquakes/Liquefaction	1.30	0.60	1.30	1.07
Extreme Heat	0.70	0.70	0.70	0.70
Flooding	1.30	0.60	0.00	0.63
Lightning	0.70	1.30	0.70	0.90
Wildfire	0.70	1.30	0.70	0.90
Winter Storm	0.70	1.30	0.00	0.67

Damaging Wind:

To calculate Statewide Risk, the Threat Score is multiplied by the average Vulnerability Score across asset types and the average Consequence Score across asset types. To this end, to calculate the Risk Score of damaging wind to the State of Idaho's petroleum infrastructure, the formula would be 1.5 (Threat Score) * 0.13 (Vulnerability Score) * 0.13 (Consequence Score) = 0.03 points out of 9 possible (Risk Score).

Flooding:

To calculate Statewide Risk, the Threat Score is multiplied by the average Vulnerability Score across asset types and the average Consequence Score across asset types. To this end, to calculate the Risk Score of flooding to the State of Idaho's petroleum infrastructure, the formula would be 1.5 (Threat Score) * 0.37 (Vulnerability Score) * 0.63 (Consequence Score) = 0.35 points out of 9 possible (Risk Score).

Earthquake and Liquefaction:

To calculate Statewide Risk, the Threat Score is multiplied by the average Vulnerability Score across asset types and the average Consequence Score across asset types. To this end, to calculate the Risk Score of earthquakes and liquefaction to the State of Idaho's petroleum infrastructure, the formula would be 2.5 (Threat Score) * 0.47 (Vulnerability Score) * 1.07 (Consequence Score) = 1.24 points out of 9 possible (Risk Score).

Extreme Heat:

To calculate Statewide Risk, the Threat Score is multiplied by the average Vulnerability Score across asset types and the average Consequence Score across asset types. To this end, to calculate the Risk Score of extreme heat to the State of Idaho's petroleum infrastructure, the formula would be 1.5 (Threat Score) * 0.70 (Vulnerability Score) * 0.70 (Consequence Score) = 0.74 points out of 9 possible (Risk Score).

Lightning:

To calculate Statewide Risk, the Threat Score is multiplied by the average Vulnerability Score across asset types and the average Consequence Score across asset types. To this end, to calculate the Risk Score of lightning to the State of Idaho's petroleum infrastructure, the formula would be 1.5 (Threat Score) * 0.83 (Vulnerability Score) * 0.90 (Consequence Score) = 1.13 points out of 9 possible (Risk Score).

Wildfire:

To calculate Statewide Risk, the Threat Score is multiplied by the average Vulnerability Score across asset types and the average Consequence Score across asset types. To this end, to calculate the Risk Score of

wildfire to the State of Idaho's petroleum infrastructure, the formula would be 3.0 (Threat Score) * 2.17 (Vulnerability Score) * 0.90 (Consequence Score) = 5.85 points out of 9 possible (Risk Score).

Winter Storms:

To calculate Statewide Risk, the Threat Score is multiplied by the average Vulnerability Score across asset types and the average Consequence Score across asset types. To this end, to calculate the Risk Score of winter storms to the State of Idaho's petroleum infrastructure, the formula would be 2.0 (Threat Score) * 0.53 (Vulnerability Score) * 0.67 (Consequence Score) = 0.71 points out of 9 possible (Risk Score).

Final Risk Ranking and Scoring Results

Using the corresponding threat and impact scores, threats were placed on the heatmaps below according to the legend. Additionally, the colors in the heat maps denote overall risk of a threat to the state. Green is Low Risk, Yellow is Medium Risk, Red is High Risk, and Purple is Very High Risk. Comparing scores across resources is generally discouraged since each scoring methodology is different.

Legend	Symbol
Damaging Wind	DW
Earthquakes/Liquefaction	E/L
Extreme Heat	EH
Flooding	F
Lightning	L
Wildfire	WF
Winter Storm	WS

Electricity

	3 (Very High)		WF			Very High Risk
Threat	2.5 (High)		E/L			
Th	2.0 (Moderate)	WS				
	1.5 (Low)		EH	DW, F, L		High Risk
	1.0 (Very Low)	Low Risk				Medium Risk
		0.00 - 1.20 (Very Low)	1.20 – 2.40 (Low)	2.40- 3.60 (Moderate)	3.60 – 4.80 (High)	4.80 - 6.00 (Very High)
	Impact (Vulnerability x Consequence)					

Natural Gas

	3 (Very High)			WF		Very High Risk
Threat	2.5 (High)	E/L				
Th	2.0 (Moderate)	WS				
	1.5 (Low)	DW, EH, F, L				High Risk
	1.0 (Very Low)	Low Risk				Medium Risk
		0.00 - 1.20 (Very Low)	1.20 – 2.40 (Low)	2.40- 3.60 (Moderate)	3.60 – 4.80 (High)	4.80 - 6.00 (Very High)
	Impact (Vulnerability x Consequence)					

Petroleum

	3 (Very High)		WF			Very High Risk
Threat	2.5 (High)	E/L				
Thr	2.0 (Moderate)	WS				
	1.5 (Low)	DW, EH, F, L				High Risk
	1.0 (Very Low)	Low Risk				Medium Risk
		0.00 - 1.20	1.20 - 2.40	2.40- 3.60	3.60 - 4.80	4.80 - 6.00
		(Very Low)	(Low)	(Moderate)	(High)	(Very High)
	Impact (Vulnerability x Consequence)					

ENERGY RESILIENCY & HAZARD MITIGATION

Resiliency and hardening efforts provide stability and progress for the people of Idaho. As the threat landscape evolves, response and mitigation techniques must adapt quicker. Employing a variety of risk mitigation measures not only strengthens infrastructure, but it also ensures systems are not reduced to a single point of failure. Public agencies and private utilities should collaborate on effective and economical strategies to ensure reliability for ratepayers. These multitude of options are described below.

Robustness

Measure	Description	Sector
Demand	Demand response programs relieve pressure on electric or natural gas	Electricity
Response	delivery systems by reducing or time shifting customer energy usage.	Natural Gas
Programs	Demand reduction during peak periods reduces the chance of system	
	overload and service failure. In addition to enhancing reliability, demand	
	response can also help reduce generator or supplier market power and	
	lessen price volatility.	
System	Energy systems (power grids, gas pipeline networks, and liquid fuels	Electricity
Segmentation	pipeline networks) can be subdivided to more efficiently isolate damaged	Liquid Fuel
	areas, allowing undamaged segments to continue serving customers. By	Natural Gas
	segmenting networks, service isolations can be more targeted and affect	
	fewer customers.	
Underground	Placing transmission lines underground protects them against external	Electricity
Power Lines	threats, including high winds and falling branches, wildfires, extreme	
	heat or cold, icing, dirt/dust/salt accumulation, and animals. Buried lines	
	may be more vulnerable to flooding if located in low-lying areas and may	
	be more difficult and expensive to maintain and repair.	

Redundancy

Measure	Description	Sector
Backup	Fixed or portable backup generators can provide backup power to	Electricity
Generators	critical facilities when grid-supplied power is interrupted. Backup	Liquid Fuels
	generators may be designed to power emergency functions, such as	Natural Gas
	emergency lighting, fire suppression, or stormwater removal, or may be	
	designed to power some or all of a facility's operational functions.	
	Mobile generators can power utility or emergency responder base	
	camps (sites where response personnel and equipment are staged).	
	Backup generators require adequate fuel supply to operate.	
Battery Storage	Battery energy storage can be used to provide limited duration backup	Electricity
	power during electric grid outages. Batteries can be deployed at utility-	
	scale as front-of-the-meter systems, providing services like utility load	
	peak shaving or behind-the-meter by customers. Batteries are often	
	paired with solar photovoltaic systems and included in microgrid	
	designs.	
Microgrids	A microgrid is a group of interconnected loads and distributed energy	Electricity
	resources that acts as a single controllable entity with respect to the	
	grid. It can connect and disconnect from the grid to operate in grid	
	connected or island mode. Microgrids can improve customer reliability	
	and resilience to grid disturbances.	

Ties between gas	Natural gas system operators can add ties between gas distribution	Natural Gas
pipelines	lines or "mains" to diversify the transmission system and allow	
	additional pathways to route natural gas in the event some sections of	
	transmission mains are damaged.	

Rapid Detection/Recovery

Measure	Description	Sector
Advanced	Advanced distribution management systems integrate numerous utility	Electricity
Distribution	systems and provide automated outage restoration and optimization of	
Management	distribution grid performance. These functions improve the resilience	
Systems	of the distribution system and decrease the length of customer outages.	
Artificial	Artificial intelligence analysis can augment the abilities of subject	Electricity
Intelligence	matter experts to prioritize transmission line operations, identify	Liquid Fuels
Analysis	defects, and update asset management systems.	Natural Gas
Distribution	Distribution automation uses digital sensors and switches with	Electricity
Automation	advanced control and communication technologies to automate feeder	
	switching; voltage and equipment health monitoring; and outage,	
	voltage, and reactive power management.	
Drones for Asset	The use of drones to inspect pipelines, transmission lines, or other	Electricity
Inspection	assets allows for safer and more frequent inspections, enhanced asset	Liquid Fuels
	information, reduced operational costs and failure rates, and extended	Natural Gas
	asset lifetimes.	
LIDAR for	Vegetation is the primary cause of overhead power line outages. "Light	Electricity
vegetation	Detection and Ranging" (LiDAR), is remote-sensing technology that	
management	can measure how close vegetation is to power lines. LiDAR units can	
	be deployed on the ground, drones or aircraft, to enable more effective	
	vegetation management reducing the impact of storms on electric	
	infrastructure.	
Remote-operated	Remote-operated valves more efficiently isolate systems during	Liquid Fuels
valves	disruptions or peak event load management (e.g., temporarily	Natural Gas
	disconnecting gas customers).	
Advanced	Advanced metering infrastructure (AMI) is an integrated system of	Electricity
Metering	smart meters, communications networks, and data management	
Infrastructure	systems that enables bi-directional communication between utilities	
	and customers. Smart meters can provide near-real-time visibility into	
	customer outages and help utilities allocate resources and restoration	
	activities more efficiently.	
Supply Chain	Assessing current supply chains and working with relevant	Electricity
Resilience	stakeholders to strategically plan for the continuity and rapid	Liquid Fuels
Planning	restoration of those supply chains after major disruptions improves	Natural Gas
	supply chain resilience.	

Cold Weather Protection Measures

Measure	Description	Sector
Pipeline	Fiberglass insulation used to enclose piping can protect against	Liquid Fuels
Insulation &	freezing. Additionally, an electrical heating element installed along the	Natural Gas
Trace Heating	length of a pipe and covered by thermal insulation can be used to	
	maintain or raise the temperature of the pipe during cold weather	
Water line	Draining water lines prevents rupturing that would otherwise be	Liquid Fuels
Management	caused by the freezing water caught inside. Water lines that cannot be	Natural Gas

	drained can be set to drip. The small amount of flow caused by the steady drip can help prevent the water inside the lines from freezing and rupturing the lines.	
Heating & Pitch Adjustment for Wind Turbines	Wind turbine blades and lubricant housings can be fitted with heating elements that prevent ice accumulation that would otherwise impair operations. Wind turbines can also be configured to operate in winter ice operation mode, which changes the pitch of the blades to allow continued operation as they accumulate ice.	Electricity
Thermal Enclosures	Instrumentation can be enclosed and heated to ensure functionality and operational continuity during extreme cold conditions.	Electricity Liquid Fuels Natural Gas

Extreme Heat & Drought Resistance Measures:

Measure	Description	Sector
Advanced Water-	Power plants require significant volumes of water for thermoelectric	Electricity
Cooling	cooling. Asset owners can employ approaches to reduce their water	•
Technologies	use to make them more resilient to drought conditions. Alternative	
	approaches include recirculating cooling, dry cooling (highlighted	
	below), and wet-dry hybrid cooling technologies. Cooling equipment	
	capable of using alternative water sources (e.g., brackish water,	
	wastewater) can reduce the impact of droughts.	
Dry Cooling	Nearly all thermal generation, including nuclear and coal-fired power	Electricity
	plants, requires large quantities of water for cooling. Extreme heat can	
	lead to water shortages or make the water used for cooling too warm,	
	forcing power plant operators to curtail electricity output. Dry cooling	
	technologies use air-cooled heat exchangers and other technologies to	
	significantly reduce water use.	
Hydropower	Increasing reservoir storage capacity at hydroelectric power plants can	Electricity
Reservoir	offset the effects of precipitation variability.	
Capacity		
Turbine	Higher-efficiency hydroelectric turbines require less water per unit of	Electricity
Efficiency	electricity generated and are more resilient to drought.	

Flood Protection Measures

Measure	Description	Sector
Elevate	Elevating equipment located in low-lying areas can protect it from	Electricity
Equipment	flooding that would otherwise damage or destroy it.	Liquid Fuels
		Natural Gas
Environmental	Preserving certain kinds of natural habitats (e.g., coastal wetlands)	Electricity
Management	provides a natural barrier to lessen the impact of storm surge.	
Flood	Installing flood walls, gates, and/or barriers can protect essential	Electricity
walls/gates	equipment in flood prone areas from water intrusion and avoid	Liquid Fuels
	restoration delays after major storms and floods.	Natural Gas
Relocate Assets	Relocating energy assets away from flood-prone areas can reduce or	Electricity
	eliminate their exposure to flooding and inundation threats	Liquid Fuels
		Natural Gas
Stormwater	Stormwater pumps can remove flood water and help prevent	Electricity
Pumps	equipment from being submerged.	Liquid Fuels
		Natural Gas

Submersible	Equipment located in flood-prone areas, such as underground power	Electricity
Equipment	distribution systems in low-lying areas, can be modified or replaced	Liquid Fuels
	with equipment that is designed to continue functioning when	Natural Gas
	subjected to flooding from water containing typical levels of	
	contaminants such as salt, fertilizer, motor oil, and cleaning solvents.	
Vent line	A vent line protector (VLP) protects gas regulator vent lines from	Natural Gas
Protectors	encroaching water. The VLP is usually open, but if water enters the	
	vent line via the VLP, a float will seal the vent line shut. The float will	
	drop when the water recedes, re-opening the vent to its normal	
	position.	
Vented Manhole	In flooding scenarios, manhole covers can dislodge, and the exposed	Electricity
Covers	manhole creates a hazard for pedestrians and vehicles. Proper vent	
	design can allow for the flow of excess water without dislodging the	
	cover	

Seismic Protection Measures

Measure	Description	Sector
Base Isolation	Substation transformers can be placed on platforms designed to	Electricity
Transformer	absorb the shaking from earthquakes that would otherwise damage the	
Platform	equipment.	
Culverts	Placing fuel pipelines within buried concrete trenches, called culverts,	Liquid Fuels
	significantly reduces the fracturing, buckling, and other damage caused	Natural Gas
	to buried pipelines during an earthquake	
Flexible Joints	Flexible joints between steel pipe segments absorb the deformations	Liquid Fuels
	caused during an earthquake and lessen the damage caused to pipeline	Natural Gas
	infrastructure	

Wildfire Protection Measures

Measure	Description	Sector
Covered	To mitigate wildfire risk, utilities can replace bare wire overhead	Electricity
Conductors	conductors on high-voltage transmission lines with conductors that	·
	have a plastic covering (also called tree wire). Covered conductors	
	greatly reduce the number of faults, and the risk of ignition. Similar	
	products include spacer cables and aerial cables.	
Fire-resistant	Wood poles can be replaced with ones made from fireproof materials,	Electricity
Poles	or wrapped in fireproof sheaths (e.g., wool-ceramic fiber).	
Line-break-	Automated monitoring equipment, called phasor measurement units,	Electricity
protection	installed on transmission lines can detect a voltage change associated	
Systems	with the breakage of a power line. The system can respond in near	
	real-time by deenergizing that segment of the transmission line so that	
	the broken power line does not spark a fire as it falls to the ground.	
Pre-treat assets in	Pre-treating infrastructure (e.g., by applying flame retardant coatings or	Electricity
path of fire	wrapping assets such as utility poles in flame retardant sheaths)	
	decreases wildfire damage and expedites restoration of service.	
Reconductoring	Reconductoring is the process of installing new conductor wires on	Electricity
	existing towers to increase transmission capacity, thus reducing	
	propensity for high loads and line sag, which can cause ignition.	
	Reconductoring typically involves replacing traditional steel-reinforced	
	lines with composite core lines.	

Wind Protection Measures

Measure	Description	Sector
Breakaway	A breakaway service connector is designed to disconnect when the	Electricity
Service	power line it is attached to is pulled by a falling limb or other debris.	
Connectors	This avoids damage caused when a service wire is pulled down in a	
	way that damages the meter receptable. Meter receptables are not	
	owned by the utility, and a private electrician is needed to first make	
	repairs, delaying service restoration	
Dead-end	Dead-end towers (also called anchor towers or anchor pylons) are self-	Electricity
Towers	supporting structures made with heavier material than suspension	
	towers. Dead-end towers are used at the end of a transmission line;	
	where the transmission line turns at a large angle; on each side of a	
	major crossing such as a large river or highway, or large valley; and at	
	intervals along straight segments to provide additional support.	
	Suspension towers are typically used when the transmission line	
	continues along a straight path. When weaker suspension towers are	
	compromised or topple, the stronger dead-end structures can stop a	
	domino effect that takes down multiple towers. Reducing the spacing	
	between dead-end structures can limit the impacts of domino effect	
	failures.	
Stronger Utility	This can involve reinforcing wood poles, replacing wood poles with	Electricity
Poles	concrete ones, or replacing wood crossarms with fiberglass ones.	
Vegetation	Clearing vegetation away from transmission and distribution lines	Electricity
Management	helps prevent damage (e.g., falling tree branches) to power lines that	
	cause outages.	